Change-point Detection Methods

for Body-Worn Video

Stephanie Allen, SUNY Geneseo
David Madras, University of Toronto
Ye Ye, UCLA
Greg Zanotti, DePaul University

Academic Mentor: Dr. Giang Tran
Consultant: Dr. Jeff Brantingham, UCLA
Industry Mentor: Sgt. Javier Macias, LAPD

imm August 18, 2016




LAPD & Body-Worn Video

@ Third largest USA municipal police department, with 9,843 officers

@ A leader in the effort to equip police officers with body-worn cameras
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Body-worn Video (BWV)




Body-worn Video (BWV)

@ Cameras worn on officers’ chests used to record police-public
interactions

» Currently deployed to 1,200 officers; will be scaled up to 7,000
e Benefits:

» Provide video record in the case of public disagreements
» Shown to increase police professionalism

e Challenge:
» Create large volumes of data, necessitating automatic data analysis

Allen, Madra: (IPAM)



Problem Statement

@ Goal: Create algorithms to detect change-points in body-worn video
» This will greatly streamline the video review process

@ For this project, we focus on a specific class of change-points:
» The moment at which an officer exits or enters their car

Images from www.youtube.com
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Data Analysis - In Car Examples

Images from www. youtube.com
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Data Analysis - Out of Car Examples

Images from www.youtube.com
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Data Analysis

@ Sample of data taken from BWV pilot program (Dec '14-May '15)

@ 691 videos, average length 9 minutes

@ 420 contain either an entrance or exit from vehicle

o Of these:
» 270 are taken from driver side
» 274 are taken from a moving vehicle
» 176 occur during nighttime
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Overview of Methods - Feature Extraction & Classification

Data

Scale invariant feature
transformation (SIFT)

Feature
Extraction
Bag of visual words

(BOV)

Convolutional neural Support vector o
network (CNN) machine (SVM) Classification




Keypoint Detection and Description —
Scale-Invariant Feature Transformation (SIFT)
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. . SIFT matrix
Image gradients Keypoint descriptor

Images from Lowe, "Distinctive Image Features from Scale-Invariant Keypoints”, and VLFeat.org




Image Representation - Bag of Visual Words

@ Sample 20% of images in the training set, extract SIFT descriptors

@ Apply k-means clustering, where the centroid of each cluster is a
'visual word'

Keypoint detection

Keypoint
feature
clusterin
€ Visual-word
vocabulary

Image from Zhang et al., "Evaluating Bag-of-Visual-Words Representations in Scene Classification”

Allen, Madra: (IPAM)



Bag of Visual Words and Spatial Pyramid

For each new input image

@ Assign keypoint descriptors
to nearest centroids




Bag of Visual Words and Spatial Pyramid

For each new input image

@ Assign keypoint descriptors =, .+ |[*. L[ e
to nearest centroids R | I Rl | ™ M P
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@ Subdivide image into three = s lla 4 all=T1a =5
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Bag of Visual Words and Spatial Pyramid

For each new input image

e Assign keypoint descriptors O
to nearest centroids O O

e Subdivide image into three A
levels of spatial resolution

e Count # of descriptors for A spatial bin

il

Frequency histogram

each spatial bin




Bag of Visual Words and Spatial Pyramid

For each new input image
2 E . Level=0 Level=1 Level=2
@ Assign keypoint descriptors

to nearest centroids ﬂ ﬂ ﬂ ﬂ ﬂ

" : 11 (11) (22) (L) (4,4)
@ Subdivide image into three ed X S AN - J
levels of spatial resolution x1/a x1/4 x1/2
@ Count # of descriptors for g

each spatial bin h ‘i.

@ Weight and concatenate
spatial histograms

Weighted histogram




Histogram Intersection Kernel

e Goal: quantify similarity between two weighted histograms
o For two histograms x, y € RP, kernel is defined as

D
Kl i) = Z min(x;, y;)-
i=1
Histogram x Histogramy

Sum up
Intersect antries

—‘ > & ) kboyeR
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Classifier - Support Vector Machine (SVM)
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e Kernel function K(x,y) = ®(x)"®(y) = 3 min(x;, v;).
i=1

@ Maximize margin and obtain weight coefficients

N
@ For a new image histogram x, Score(x) = 3 antaK(x,Xs) + b

n=1




Classifier - Neural Network

@ An artificial neural network jointly learns a feature representation
and discriminative classifier over data

@ Neurons are stacked on top of one another in layers to form complex,
highly informative features

@ At the last layer, outputs are normalized to form class predictions

hidden layers

mput layer |

Image from Nielsen, Neural Networks and Deep Learning




Neural Network Detail

@ Generally, operations within a neuron consist of multiplying inputs
by weights, passing them to a transfer function, and passing the
result through a nonlinear, thresholded “activation” function

_ weights
inputs

@)
activation

functon
% @ net input
s ner,
d
> @ 0
Y 0 activation
;t—-
transfer
. function
0
X, /
threshold

@ Neural networks are trained by changing the weights according to an
iterative optimization algorithm like gradient descent

Image from https://en.wikibooks.org/wiki/File:ArtificialNeuronModel english.png
(IPAM)




Convolutional Neural Networks
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convolunon

feature extraction classification

@ Convolutional neural networks, or ConvNets, learn hierarchical filter
banks for images. Architectures consist of alternating convolutional
and pooling layers—some with nonlinearities.

@ Convolutional layers slide a filter over an input to detect a certain
pattern. Pooling layers subsample upstream outputs.

Image from Parallel Architecture Research Eindhoven
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ConvNet Features

@ As ConvNets are trained, the filters change what they detect and
“learn” important features.

@ Filters at early layers detect edges and blobs. Filters in later layers
combine output of lower level filters to detect more complex patterns.
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Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fe8: Object Classes

Image from http://wwv.cc.gatech.edu/ hays/compvision/proj6/




Using and Finetuning ConvNets

e Although ConvNets are extremely powerful, training them can be
incredibly computationally intensive

@ General convolutional networks for image recognition are created and
released by researchers, and can be “finetuned” to specific problems

@ We modify the popular VGG-16 architecture, and change only the top
two layers to classify scenes as in/out of car




Classification Results

@ Change-point detection depends on strong classification results

@ Our predictions were made using 10-fold cross-validation on a large
sample of or all of the videos

@ Precision: How many of our out of car predictions were truly out of
car?

@ Recall: How many of our out of car frames did we correctly identify?

Classifier Accuracy Precision Recall
SIFT-BOV-SVM 90% 92% 89%
ConvNet 94% 96% 95%

Allen, Madras, notti (IPAM)




Overview of Methods - Change-point Detection

‘ Feature Extraction

A 4

Classification

A4

Change-point Detection

August



Change-point Methods Overview

e Given a time series X;,i = 1...n, there may be one or more
change-points ¢ where the underlying distribution of the X; changes.

@ In the case of one change-point:
Xi~FVi<c Xi~F Vi >c
for some distributions F; # F»,c € {1...n}

e Goal: To find ¢

» Evaluate an objective function or test statistic for each X; for
i €{l...n}

» Find i to optimize the objective function or all i which produce a test
statistic value greater than a threshold




Five Change-point Methods

© Forecasting/Time Series Analysis
@ BoVW Histogram Comparison
© Hidden Markov Model

© Mean-Squared Error

© Maximum Likelihood

Allen, Madras, Ye tti (IPAM) Vide: ange-point D tio August



Method 1: Forecasting/Time Series Analysis

@ Elements in a time series often are correlated with each other.
Autoregressive One Lag (AR(1)) : X; = By + B1 X¢—1

@ Assume the sequence of scores is stationary between change-points —
meaning the mean is constant during those intervals

@ We can forecast the next observation in a given interval based on a
mean of the previous observations.

Mean Model : X; = X




Method 1: Forecasting/Time Series

@ “Future window" technique: Enables the application of forecasting
methods to change-point detection

» Estimate a model based on data-points from the beginning of the series
» Forecast a set number of future values using the established model

» |If the forecasting error for all of these observations is larger than a
set threshold, declare a change-point.

» Re-estimate the model based on the observations in this window

Allen, Madra:



Method 2: BoVW Histogram Comparison

@ Establish a baseline histogram and compare successive histograms in
the series to this baseline via the future window technique:
LR PR
» X2 Method: y2 = 3 {o—ea) e,.e’)

i=1
where e is the baseline histogram and o is a histogram in the future
window

» Match Distance: dy(H,K) = Z |hi — ki,

where h; is the cumulative hlstogram of the elements of h up to bin i,
h is the baseline histogram, and k is a histogram in the future window




Method 3: Hidden Markov Model

@ Goal: given a sequence of observations, infer the most probable
sequence of hidden variables.

@ Change-point = transitions in the inferred states of hidden variables




Method 3: Hidden Markov Model

@ Goal: given a sequence of observations, infer the most probable

sequence of hidden variables.
@ Change-point = transitions in the inferred states of hidden variables

7TNA N BT
nmi 4 {}—>I€ Zy )—)K Z3 )—) - {2;})L,: hidden variables
: S o

o Jo e
@ @ @ {0;})L,: observations

I1: initial distribution
A: transition matrix
@: emission parameters of observations’ distributions

Allen, Madra:



Method 4: Mean-Squared Error
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Method 4: Mean-Squared Error
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Method 4: Mean-Squared Error

@ For large enough sample size, the sample mean X; will be a normal
random variable by the Central Limit Theorem

@ Therefore, X*> will be a gamma random variable and:

n
MSE(c) — > xF = c& + (n—c)% ~T(1,202)
i=1

@ We can then derive a p-value for a measurement of mean-squared
error
N2
MSE(c) — 21 X

=

p:

2
202

@ Where p-value is low, we are near a change-point




Method 4: Mean-Squared Error

@ We can now recursively extend mean-squared error to sequences with
multiple change points

@ Given sequence x;, find x; with smallest MSE.
@ Calculate p-value for MSE(j), then if p > « threshhold, stop.

© Run MSE again on sequences x;...xj—1 and Xji1...Xp.

© Return x;, and the outputs of MSE(x;...xj—1) and MSE(xj11...x,) as
change-points.




Method 5: Maximum Likelihood Estimation

@ We find the log-likelihood of the true labels given the data
log £(L, X) ~ log ] [ P(Xi|L;)
i=1

= log(p) Z I[x; = Li] + log(1 — p)z I[xi # Li]

where x; € {0, 1} is classifier output, p € [0, 1] is classifier accuracy

@ We maximize this likelihood by formulating it as a linear program,
and constraining the number of possible change-points

Allen, Madras, Yi tti (IPAM) Vide vange-point D tio August



Change-point Detection Results

Change-Point Example - Ground Truth
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Change-point Detection Results

Change-Point Example - Predictions vs. Ground Truth
ecdbuill il 4 ek =

| —— Ground Truth
{==_CP Predictions |
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Change-point Detection Results

@ Using 691 LAPD videos (420 contain at least one change-point)

@ Qur methods ran on scores from the convolutional neural network

Table: Univariate Multiple Change-point Detection Results (All Videos)

Method Recall (10 s) Precision (10 s)
Autoregressive: One Lag 85% 60%
Maximum Likelihood 88% 61%
Mean Model 88% 61%
Mean-Squared Error 88% 68%
Hidden Markov Model 93% 65%

Allen, Madras, Ye tti (IPAM)

August



Change-point Detection Result - Multivariate Data

@ Tested methods on BoVW histogram representations and CNN
representations

@ Representations were made in an unsupervised way—didn't need to
train a classifier with labeled data (i.e. frames labeled in/out of car)

o Benefits: these methods are much more generalized

e Challenges: high-dimensional space is extremely complex,
unsupervised methods are difficult to assess

Table: Multiple Change-point Detection Results for Multivariate Data

Method Recall Precision
Mean-Squared Error  86% 17%
Match Distance 98% 13%
2 Test 100%  20%

Allen, Madras, tti (IPAM) Vi point [ ol August



Annotated data, conducted data analysis

Built and tuned classifiers to detect in car/out of car images with
90%-+ accuracy, 95%+ precision and recall

Developed a variety of change point detection methods for univariate
and multivariate data

Achieved 90% recall and nearly 70% precision on change-points in
univariate data

@ Methods work well on a variety of videos

With or without change-points

Driver or passenger side

Indoor or outdoor driving

Daytime or nighttime driving

>
| 2
>
| 2

Allen, Madra:




Questions?



@ Improve unsupervised methods for multivariate time series
@ Exploit the spatiotemporal structure of the data

@ Explore applicability of change-point detection to other domains

Allen, Madra:



Difference of Gaussians

@ Subtract one blurred image from another less blurred image

@ Increase visibility of edges

Original image Image after difference of Gaussian
filtering in black and white

Image from https://en.wikipedia.org/wiki/Difference_of _Gaussians




Histogram Intersection Kernel Proof

@ let x.y € RP be two histogram representations, and let M be the
number of pixels in each image. Then, M is also an upper bound for
the maximum number of keypoints in any image.

@ Claim: A mapping function ® can be found such that

o(x)To(y) = Zmln %s Vi)

@ Proof by construction:
X1 X2
,_H ,—/\._\
Bbe)e=LT 00 500 o000 Tonn: 10000,
N, e’

——
M—x; M—xz

XD

oo Lyligroniy 1305 0oy 0)

M—xp
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VGG-16 Architecture

224 x224x3 224 x 224 x 64

2x|112x 128
56{x 56 x 256

] _ﬁﬂﬁ—_ 1x1x4096 1x1x1000

@ convolution+ ReLL.U
[' 7] max pooling
fully connected+Rel.U

] softmax

Image from
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
Allen (IPANM)




Hidden Markov Model

o Hidden variables {z,}V_,

(1 0)7 if “in-car"
P —
! (0 1)T otherwise

e Initial distribution 7 = (71 m2)

e Transition probability Aj = p(z,; = 1|z,—1,; = 1), where i,j € {1,2}

@ Conditional distributions of observed variables:

P(Xn|zn, ) = (\/;W_Jl - (%, ;1p1)2 ))z,,,l |

( 1 exp[(X" _2;1..2)2)):,,,2!

Allen, Madras,

i (IPAM) Vi soint D August



Hidden Markov Model Coefficient Estimates

e Initial distribution: # = [0.667 0.333]

0.9883 0.0117}

@ Transition matrix: A = [0'0044 0.9956

@ Emission parameters:
» Gaussian distribution governs the prediction of observed scores, based
on the current state
» In-car: ji; = —1.85, ;1 = 1.33
» Out-of-car: ji» = 1.96, & = 1.06

Allen, Madras, notti (IPAM) A i ol August



SIFT-BoVW-SVM Results

@ The SVM scores were outputted for videos with change-points.

Table: Univariate Multiple Change-point Detection Results

Method Recall (10 s) Precision (10 s)
Maximum Likelihood Estimation 66% 34%
Autoregressive (1) 90% 17%
Hidden Markov Model 90% 17%
Mean Model 96% 18%
Mean-Squared Error 91% 30%

Allen, Madras, Ye tti (IPAM) Vide: ange-point D tio August
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LAPD & Body-Worn Video

@ Third largest USA municipal police department, with 9,843 officers

@ A leader in the effort to equip police officers with body-worn cameras

tti (IPAM)



Body-worn Video (BWV)




Body-worn Video (BWV)

@ Cameras worn on officers’ chests used to record police-public
interactions

» Currently deployed to 1,200 officers; will be scaled up to 7,000
e Benefits:

» Provide video record in the case of public disagreements
» Shown to increase police professionalism

e Challenge:
» Create large volumes of data, necessitating automatic data analysis

Allen, Madra: (IPAM)



Problem Statement

@ Goal: Create algorithms to detect change-points in body-worn video
» This will greatly streamline the video review process

@ For this project, we focus on a specific class of change-points:
» The moment at which an officer exits or enters their car

Images from www.youtube.com

Allen, Madra il 1) [ ol August 18, 2016



Data Analysis - In Car Examples

Images from www. youtube.com
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Data Analysis - Out of Car Examples

Images from www.youtube.com
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Data Analysis

@ Sample of data taken from BWV pilot program (Dec '14-May '15)

@ 691 videos, average length 9 minutes

@ 420 contain either an entrance or exit from vehicle
@ Of these:
» 270 are taken from driver side

» 274 are taken from a moving vehicle
» 176 occur during nighttime




Overview of Methods

| Data \

A 4

‘ Feature Extraction

A 4

Classification

A4

Change-point Detection

August



Overview of Methods

o Feature extraction methods take the sequence of images and reduce
the images to compact representations that are then passed into
classifiers.

@ Other classifiers take raw images.
@ Change-point detection methods have the ability to:

» Take univariate or multivariate data
» Detect any number of change-points per video

Allen, Madra:
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‘ Feature Extraction

A 4

Classification

A4

Change-point Detection




Overview of Methods - Feature Extraction & Classification

Data

Scale invariant feature
transformation (SIFT)

Feature
Extraction
Bag of visual words

(BOV)

Convolutional neural Support vector o
network (CNN) machine (SVM) Classification




Keypoint Detection and Description —
Scale-Invariant Feature Transformation (SIFT)

paIMOELY 7 V7 I B ~ 5T =
RELMIER I 5| 2 5] —s] -

. . SIFT matrix
Image gradients Keypoint descriptor

Images from Lowe, "Distinctive Image Features from Scale-Invariant Keypoints”, and VLFeat.org




Image Representation - Bag of Visual Words

@ Sample 20% of images in the training set, extract SIFT descriptors

@ Apply k-means clustering, where the centroid of each cluster is a
'visual word'

Keypoint detection

Keypoint
feature
clusterin
€ Visual-word
vocabulary

Image from Zhang et al., "Evaluating Bag-of-Visual-Words Representations in Scene Classification”

Allen, Madra: (IPAM)



Bag of Visual Words and Spatial Pyramid

For each new input image

@ Assign keypoint descriptors
to nearest centroids




Bag of Visual Words and Spatial Pyramid

For each new input image

. . . . " a . & a " a L
@ Assign keypoint descriptors 3 S | A e R
" -] . -] & a A
to nearest centroids %, ° %,| @ %, | ®
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e Subdivide image into three . . . . = s
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levels of spatial resolution
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11,1)
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Allen, Madra:



Bag of Visual Words and Spatial Pyramid

For each new input image

e Assign keypoint descriptors O
to nearest centroids O O

e Subdivide image into three A
levels of spatial resolution

e Count # of descriptors for A spatial bin

il

Frequency histogram

each spatial bin




Bag of Visual Words and Spatial Pyramid

For each new input image
2 E . Level=0 Level=1 Level=2
@ Assign keypoint descriptors

to nearest centroids ﬂ ﬂ ﬂ ﬂ ﬂ

" : 11 (11) (22) (L) (4,4)
@ Subdivide image into three ed X S AN - J
levels of spatial resolution x1/a x1/4 x1/2
@ Count # of descriptors for g

each spatial bin h ‘i.

@ Weight and concatenate
spatial histograms

Weighted histogram




Histogram Intersection Kernel

e Goal: quantify similarity between two weighted histograms
o For two histograms x, y € RP, kernel is defined as

D
Kl i) = Z min(x;, y;)-
i=1
Histogram x Histogramy

Sum up
Intersect antries

—‘ > & ) kboyeR
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Classifier - Support Vector Machine (SVM)

2 ®(x,
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e Kernel function K(x,y) = ®(x)"®(y) = 3 min(x;, v;).
i=1

@ Maximize margin and obtain weight coefficients

N
@ For a new image histogram x, Score(x) = 3 antaK(x,Xs) + b

n=1




Classifier - Neural Network

@ An artificial neural network jointly learns a feature representation
and discriminative classifier over data

@ Neurons are stacked on top of one another in layers to form complex,
highly informative features

@ At the last layer, outputs are normalized to form class predictions

hidden layers

mput layer |

Image from Nielsen, Neural Networks and Deep Learning




Neural Network Detail

@ Generally, operations within a neuron consist of multiplying inputs
by weights, passing them to a transfer function, and passing the
result through a nonlinear, thresholded “activation” function

_ weights
inputs

@)
activation

functon
% @ net input
s ner,
d
> @ 0
Y 0 activation
;t—-
transfer
. function
0
X, /
threshold

@ Neural networks are trained by changing the weights according to an
iterative optimization algorithm like gradient descent

Image from https://en.wikibooks.org/wiki/File:ArtificialNeuronModel english.png
(IPAM)




Convolutional Neural Networks
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convolunon

feature extraction classification

@ Convolutional neural networks, or ConvNets, learn hierarchical filter
banks for images. Architectures consist of alternating convolutional
and pooling layers—some with nonlinearities.

@ Convolutional layers slide a filter over an input to detect a certain
pattern. Pooling layers subsample upstream outputs.

Image from Parallel Architecture Research Eindhoven

Allen, Madra:



ConvNet Features

@ As ConvNets are trained, the filters change what they detect and
“learn” important features.

@ Filters at early layers detect edges and blobs. Filters in later layers
combine output of lower level filters to detect more complex patterns.
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Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fe8: Object Classes

Image from http://wwv.cc.gatech.edu/ hays/compvision/proj6/




Using and Finetuning ConvNets

e Although ConvNets are extremely powerful, training them can be
incredibly computationally intensive

@ General convolutional networks for image recognition are created and
released by researchers, and can be “finetuned” to specific problems

@ We modify the popular VGG-16 architecture, and change only the top
two layers to classify scenes as in/out of car




Classification Results

@ Change-point detection depends on strong classification results

@ Our predictions were made using 10-fold cross-validation on a large
sample of or all of the videos

@ Precision: How many of our out of car predictions were truly out of
car? (complement of false pos. rate)

@ Recall: How many of our out of car frames did we correctly identify?

Classifier Accuracy Precision Recall
SIFT-BOV-SVM 90% 92% 89%
ConvNet 94% 96% 95%

Allen, Madras, notti (IPAM)
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Change-point Methods Overview

@ Given a time series X;,/ = 1...n, there may be one or more
change-points ¢ where the underlying distribution of the X; changes.

@ In the case of one change-point:
Xi~FVi<ec Xi~F Vi >c
for some distributions F; # F, ¢ € {1...n}
e Goal: To find ¢

» Evaluate an objective function or test statistic for each X; for
i€{l.n}

» Find / to optimize the objective function or all / which produce a test
statistic value greater than a threshold




Five Change-point Methods

© Forecasting/Time Series

© BoVW Histogram Comparison
© Hidden Markov Model

@ Mean-Squared Error

© Maximum Likelihood

Allen, Madras, i (IPAM) Vi soint D August 1



Method 1: Forecasting/Time Series

@ Elements in a time series often are correlated with each other.
Autoregressive One Lag (AR(1)) : X; = By + B1 X;—1

@ If there are no change-points in a sequence of scores, we can assume
the sequence is stationary and thus has a constant mean.

@ We can forecast the next observation based on a mean of the previous
observations.

Mean Model : X; = X




Method 1: Forecasting/Time Series

@ “Future window" technique: Enables the application of forecasting
methods to change-point detection

» Estimate a model based on data-points from the beginning of the series
» Forecast a set number of future values using the established model

» |If the forecasting error for all of these observations is larger than a
set threshold, declare a change-point.

» Re-estimate the model based on the observations in this window

Allen, Madra:



Method 2: BoVW Histogram Comparison

@ Establish a baseline histogram and compare successive histograms in
the series to this baseline via the future window technique:
» %2 Method: x? Z (°"'re)

where e is the baselme histogram and o is a histogram in the future
window

» Match Distance: dy(H,K) = z |h; —

where h; is the cumulative hlstogram of the elements of h up to bin /




Method 3: Hidden Markov Model

@ Goal: given a sequence of observations, infer the most probable
sequence of hidden variables.

@ Change-point = transitions in the inferred states of hidden variables




Method 3: Hidden Markov Model

@ Goal: given a sequence of observations, infer the most probable

sequence of hidden variables.
@ Change-point = transitions in the inferred states of hidden variables

7TNA N BT
nmi 4 {}—>I€ Zy )—)K Z3 )—) - {2;})L,: hidden variables
: S o

o Jo e
@ @ @ {0;})L,: observations

I1: initial distribution
A: transition matrix
@: emission parameters of observations’ distributions
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Method 4: Mean-Squared Error Change-point Detection
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Method 4: Mean-Squared Error Change-point Detection
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Method 4: Mean-Squared Error Change-point Detection

@ For large enough samples, the sample mean X; will be a normal
random variable by the Central Limit Theorem

@ Therefore, X*> will be a gamma random variable and:
n
MSE(c) = > xF = cx + (n—c)% ~(1,207)
i=1
@ We can then derive a p-value for a measurement of mean-squared
error

MSE(c) — 3 x?
i=1

P 202

@ Where p-value is low, we are near a change-point

Allen, Madras, tti (IPAM)



Method 4: Mean-Squared Error - Multiple Change-point

Detection

@ We can now recursively extend mean-squared error to sequences with
multiple change points

@ Given sequence x;, find x; with smallest MSE.
@ Calculate p-value for MSE(j), then if p > « threshhold, stop.
© Run MSE again on sequences xj...xj—1 and Xjy1...Xp.

@ Return x;j, and the outputs of MSE(x;...xj_1) and MSE(xj1+1...x,) as
change-points.
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Method 5: Maximum Likelihood Estimation

o We find the log-likelihood of the true labels given the data
log L(L, X) ~ log H P(Xi|L)
i=1

= log(p) Z I[x; = L;] + log(1 — p)z I # L]
i=1 i=1

where x; € {0,1} is classifier output, p € [0,1] is classifier accuracy

@ We maximize this likelihood by formulating it as a linear program,
and constraining the number of possible change-points
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Change-point Detection Results

Change-Point Example - Ground Truth
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Change-point Detection Results

Change-Point Example - Predictions vs. Ground Truth
ecdbuill il 4 ek =
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Change-point Detection Results

@ Using 691 LAPD videos (420 contain at least 1 change-point)

@ Our methods ran on output from the convolutional neural network

Table: Univariate Multiple Change-point Detection Results (All Videos)

Method Recall (10 s) Precision (10 s)
Autoregressive (1) 85% 60%
Maximum Likelihood 88% 61%
Mean Model 88% 61%
Mean-Squared Error 88% 68%
Hidden Markov Model 93% 65%
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Change-point Detection Result - Multivariate Data

@ Tested methods on BoVW histogram representations and CNN
representations

@ Representations were made in an unsupervised way—didn't need to
train a classifier with labeled data (i.e. frames labeled in/out of car)

@ Benefits: these methods are much more generalized

@ Challenges: high-dimensional space is extremely complex,
unsupervised methods are difficult to assess

Table: Multiple change-point detection Results for Multivariate Data

Method Recall Precision
Mean-Squared Error  86% 17%
Match Distance 99% 15%

X2 Test 100%  21%




Annotated data, conducted data analysis

Built and tuned classifiers to detect in car/out of car images with
90%-+ accuracy, 95%+ precision and recall

Developed a variety of change point detection methods for univariate
and multivariate data

Achieved 90% recall and nearly 70% precision on change-points in
univariate data

@ Methods work well on a variety of videos

With or without change-points

Driver or passenger side

Indoor or outdoor driving

Daytime or nighttime driving

>
| 2
>
| 2
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Suggestions for RIPS 2017

Improve unsupervised methods for multivariate time series
Investigate methods for online data
Exploit the spatiotemporal structure in the data

e © ¢ o

Explore applicability of change-point detection to alternative domains




Questions?



Difference of Gaussians

@ Subtract one blurred image from another less blurred image

@ Increase visibility of edges

Original image Image after difference of Gaussian
filtering in black and white

Image from https://en.wikipedia.org/wiki/Difference_of _Gaussians




Histogram Intersection Kernel Proof

@ let x.y € RP be two histogram representations, and let M be the
number of pixels in each image. Then, M is also an upper bound for
the maximum number of keypoints in any image.

@ Claim: A mapping function ® can be found such that

o(x)To(y) = Zmln %s Vi)

@ Proof by construction:
X1 X2
,_H ,—/\._\
Bbe)e=LT 00 500 o000 Tonn: 10000,
N, e’

——
M—x; M—xz

XD

oo Lyligroniy 1305 0oy 0)

M—xp
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VGG-16 Architecture

224 x224x3 224 x 224 x 64

2x|112x 128
56{x 56 x 256

] _ﬁﬂﬁ—_ 1x1x4096 1x1x1000

@ convolution+ ReLL.U
[' 7] max pooling
fully connected+Rel.U

] softmax

Image from
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
Allen (IPANM)




Hidden Markov Model

o Hidden variables {z,}V_,

(1 0)7 if “in-car"
P —
! (0 1)T otherwise

e Initial distribution 7 = (71 m2)
e Transition probability Aj = p(z,; = 1|z,—1,; = 1), where i,j € {1,2}

@ Conditional distributions of observed variables:

(xs ;#1)2))2”‘1 .

plolzn ©) = (s ex
( il exp{ (Xn _;1-2)2 )) o !
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Hidden Markov Model Coefficient Estimates

e Initial distribution: # = [0.667 0.333]

N . 2 10.9883 0.0117
e Transition matrix: A = [0_0044 0_9956}

@ Emission parameters:

» Standard deviations: &; = 1.3251, &, = 1.0583
» Means: iy = —1.8499, [i» = 1.9646
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SIFT-BoVW-SVM Results

@ The SVM scores were outputted for videos with change-points.

Table: Univariate Multiple Change-point Detection Results

Method Recall (10 s) Precision (10 s)
Maximum Likelihood 66% 34%
Mean Model 89% 18%
Autoregressive (1) 90% 17%
Hidden Markov Model 90% 17%
Mean-Squared Error 91% 30%
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