Change-point Detection Methods for Body-Worn Video

Stephanie Allen, SUNY Geneseo
David Madras, University of Toronto
Ye Ye, UCLA
Greg Zanotti, DePaul University

Academic Mentor: Dr. Giang Tran Consultant: Dr. Jeff Brantingham, *UCLA* Industry Mentor: Sgt. Javier Macias, *LAPD*

August 18, 2016

LAPD & Body-Worn Video

- Third largest USA municipal police department, with 9,843 officers
- A leader in the effort to equip police officers with body-worn cameras

Body-worn Video (BWV)

Body-worn Video (BWV)

- Cameras worn on officers' chests used to record police-public interactions
 - ▶ Currently deployed to 1,200 officers; will be scaled up to 7,000

Benefits:

- Provide video record in the case of public disagreements
- Shown to increase police professionalism

Challenge:

Create large volumes of data, necessitating automatic data analysis

Problem Statement

- Goal: Create algorithms to detect change-points in body-worn video
 - ▶ This will greatly streamline the video review process
- For this project, we focus on a specific class of change-points:
 - The moment at which an officer exits or enters their car

Data Analysis - In Car Examples

Images from www.youtube.com

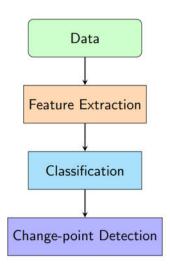
Data Analysis - Out of Car Examples

Images from www.youtube.com

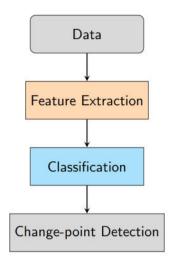
Data Analysis

- Sample of data taken from BWV pilot program (Dec '14-May '15)
- 691 videos, average length 9 minutes
- 420 contain either an entrance or exit from vehicle
- Of these:
 - 270 are taken from driver side
 - > 274 are taken from a moving vehicle
 - 176 occur during nighttime

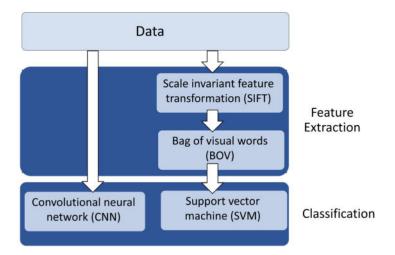
Overview of Methods



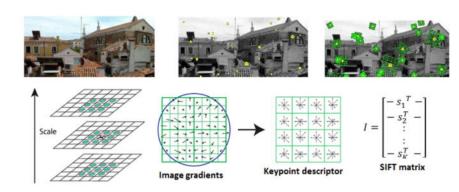
Overview of Methods - Feature Extraction & Classification



Overview of Methods - Feature Extraction & Classification



Keypoint Detection and Description – Scale-Invariant Feature Transformation (SIFT)



Images from Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", and VLFeat.org

Image Representation - Bag of Visual Words

- Sample 20% of images in the training set, extract SIFT descriptors
- Apply k-means clustering, where the centroid of each cluster is a 'visual word'

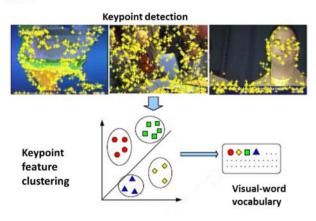
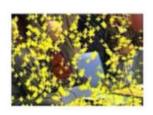
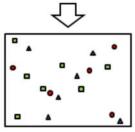


Image from Zhang et al., "Evaluating Bag-of-Visual-Words Representations in Scene Classification"

For each new input image

 Assign keypoint descriptors to nearest centroids





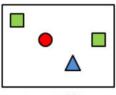
For each new input image

- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution



For each new input image

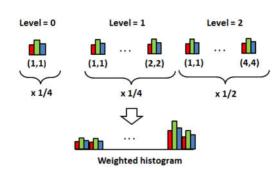
- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution
- Count # of descriptors for each spatial bin



A spatial bin

For each new input image

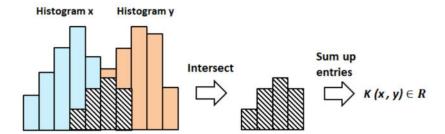
- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution
- Count # of descriptors for each spatial bin
- Weight and concatenate spatial histograms



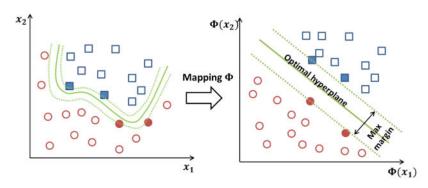
Histogram Intersection Kernel

- Goal: quantify similarity between two weighted histograms
- For two histograms $x, y \in \mathbb{R}^D$, kernel is defined as

$$K(x,y) = \sum_{i=1}^{D} \min(x_i, y_i).$$



Classifier - Support Vector Machine (SVM)



- Kernel function $K(x, y) = \Phi(x)^T \Phi(y) = \sum_{i=1}^D \min(x_i, y_i)$.
- Maximize margin and obtain weight coefficients
- For a new image histogram x, $Score(x) = \sum_{n=1}^{N} a_n t_n K(x, x_n) + b$

Classifier - Neural Network

- An artificial neural network jointly learns a feature representation and discriminative classifier over data
- Neurons are stacked on top of one another in layers to form complex, highly informative features
- At the last layer, outputs are normalized to form class predictions

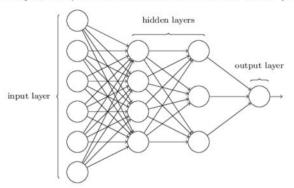
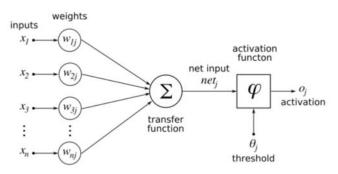


Image from Nielsen. Neural Networks and Deep Learning

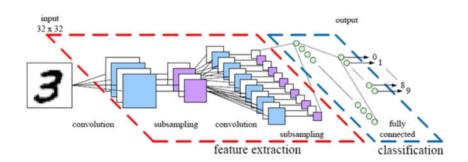
Neural Network Detail

 Generally, operations within a neuron consist of multiplying inputs by weights, passing them to a transfer function, and passing the result through a nonlinear, thresholded "activation" function



 Neural networks are trained by changing the weights according to an iterative optimization algorithm like gradient descent

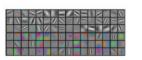
Convolutional Neural Networks



- Convolutional neural networks, or ConvNets, learn hierarchical filter banks for images. Architectures consist of alternating convolutional and pooling layers—some with nonlinearities.
- Convolutional layers slide a filter over an input to detect a certain pattern. Pooling layers subsample upstream outputs.

ConvNet Features

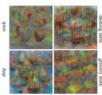
- As ConvNets are trained, the filters change what they detect and "learn" important features.
- Filters at early layers detect edges and blobs. Filters in later layers combine output of lower level filters to detect more complex patterns.



Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts



Fc8: Object Classes

Using and Finetuning ConvNets

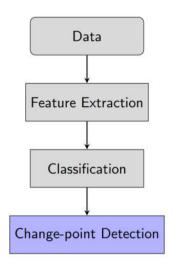
- Although ConvNets are extremely powerful, training them can be incredibly computationally intensive
- General convolutional networks for image recognition are created and released by researchers, and can be "finetuned" to specific problems
- We modify the popular VGG-16 architecture, and change only the top two layers to classify scenes as in/out of car

Classification Results

- Change-point detection depends on strong classification results
- Our predictions were made using 10-fold cross-validation on a large sample of or all of the videos
- Precision: How many of our out of car predictions were truly out of car?
- Recall: How many of our out of car frames did we correctly identify?

Classifier	Accuracy	Precision	Recall
SIFT-BOV-SVM	90%	92%	89%
ConvNet	94%	96%	95%

Overview of Methods - Change-point Detection



Change-point Methods Overview

- Given a time series X_i , i = 1...n, there may be one or more **change-points** c where the underlying distribution of the X_i changes.
- In the case of one change-point:

$$X_i \sim F_1 \ \forall \ i \leq c, \ X_i \sim F_2 \ \forall \ i > c$$
 for some distributions $F_1 \neq F_2, c \in \{1...n\}$

- Goal: To find c
 - Evaluate an objective function or test statistic for each X_i for i ∈ {1...n}
 - ► Find *i* to optimize the objective function or all *i* which produce a test statistic value greater than a threshold

Five Change-point Methods

- Forecasting/Time Series Analysis
- BoVW Histogram Comparison
- Hidden Markov Model
- Mean-Squared Error
- Maximum Likelihood

Method 1: Forecasting/Time Series Analysis

• Elements in a time series often are correlated with each other.

Autoregressive One Lag
$$(AR(1)): X_t = B_0 + B_1X_{t-1}$$

- Assume the sequence of scores is stationary between change-points meaning the mean is constant during those intervals
- We can forecast the next observation in a given interval based on a mean of the previous observations.

Mean Model :
$$X_t = \bar{X}$$

Method 1: Forecasting/Time Series

- "Future window" technique: Enables the application of forecasting methods to change-point detection
 - Estimate a model based on data-points from the beginning of the series
 - ► Forecast a set number of future values using the established model
 - If the forecasting error for all of these observations is larger than a set threshold, declare a change-point.
 - Re-estimate the model based on the observations in this window

Method 2: BoVW Histogram Comparison

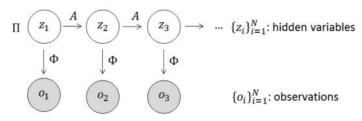
- Establish a baseline histogram and compare successive histograms in the series to this baseline via the future window technique:
 - χ^2 Method: $\chi^2 = \sum_{i=1}^m \frac{(o_i e_i)^2}{e_i}$, where e is the baseline histogram and o is a histogram in the future window
 - Match Distance: $d_M(H, K) = \sum_{i=1}^m |h_i k_i|$, where h_i is the cumulative histogram of the elements of h up to bin i, h is the baseline histogram, and k is a histogram in the future window

Method 3: Hidden Markov Model

- Goal: given a sequence of observations, infer the most probable sequence of hidden variables.
- Change-point = transitions in the inferred states of hidden variables

Method 3: Hidden Markov Model

- Goal: given a sequence of observations, infer the most probable sequence of hidden variables.
- **Change-point** = transitions in the inferred states of hidden variables

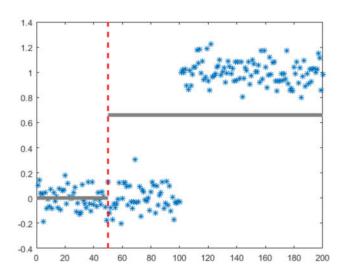


Π: initial distribution

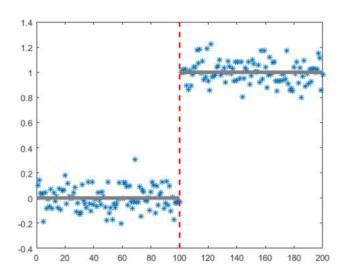
A: transition matrix

Φ: emission parameters of observations' distributions

Method 4: Mean-Squared Error



Method 4: Mean-Squared Error



Method 4: Mean-Squared Error

- For large enough sample size, the sample mean \bar{x}_i will be a **normal** random variable by the Central Limit Theorem
- Therefore, \bar{x}_i^2 will be a gamma random variable and:

$$MSE(c) - \sum_{i=1}^{n} x_i^2 = c\bar{x}_1^2 + (n-c)\bar{x}_2^2 \sim \Gamma(1, 2\sigma_x^2)$$

 We can then derive a p-value for a measurement of mean-squared error

$$p = \frac{MSE(c) - \sum_{i=1}^{n} x_i^2}{2\sigma_x^2}$$

• Where p-value is low, we are near a change-point

Method 4: Mean-Squared Error

- We can now recursively extend mean-squared error to sequences with multiple change points
 - **1** Given sequence x_i , find x_i with smallest MSE.
 - ② Calculate p-value for MSE(j), then if $p \ge \alpha$ threshold, stop.
 - **3** Run MSE again on sequences $x_1...x_{j-1}$ and $x_{j+1}...x_n$.
 - Return x_j , and the outputs of $MSE(x_1...x_{j-1})$ and $MSE(x_{j+1}...x_n)$ as change-points.

Method 5: Maximum Likelihood Estimation

• We find the log-likelihood of the true labels given the data

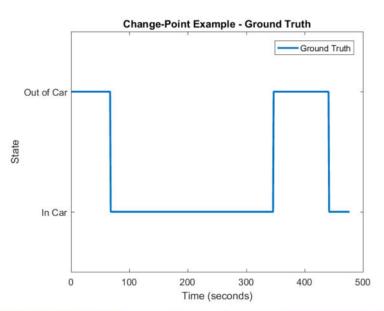
$$\log \mathcal{L}(L,X) \sim \log \prod_{i=1}^{n} P(X_i|L_i)$$

$$= \log(p) \sum_{i=1}^{n} I[x_i = L_i] + \log(1-p) \sum_{i=1}^{n} I[x_i \neq L_i]$$

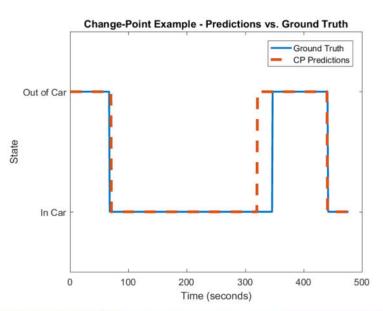
where $x_i \in \{0,1\}$ is classifier output, $p \in [0,1]$ is classifier accuracy

 We maximize this likelihood by formulating it as a linear program, and constraining the number of possible change-points

Change-point Detection Results



Change-point Detection Results



Change-point Detection Results

- Using 691 LAPD videos (420 contain at least one change-point)
- Our methods ran on scores from the convolutional neural network

Table: Univariate Multiple Change-point Detection Results (All Videos)

Method	Recall (10 s)	Precision (10 s)
Autoregressive: One Lag	85%	60%
Maximum Likelihood	88%	61%
Mean Model	88%	61%
Mean-Squared Error	88%	68%
Hidden Markov Model	93%	65%

Change-point Detection Result - Multivariate Data

- Tested methods on BoVW histogram representations and CNN representations
- Representations were made in an unsupervised way—didn't need to train a classifier with labeled data (i.e. frames labeled in/out of car)
- Benefits: these methods are much more generalized
- Challenges: high-dimensional space is extremely complex, unsupervised methods are difficult to assess

Table: Multiple Change-point Detection Results for Multivariate Data

Method	Recall	Precision
Mean-Squared Error	86%	17%
Match Distance	98%	13%
χ^2 Test	100%	20%

Summary

- Annotated data, conducted data analysis
- Built and tuned classifiers to detect in car/out of car images with 90%+ accuracy, 95%+ precision and recall
- Developed a variety of change point detection methods for univariate and multivariate data
- Achieved 90% recall and nearly 70% precision on change-points in univariate data
- Methods work well on a variety of videos
 - With or without change-points
 - Driver or passenger side
 - Indoor or outdoor driving
 - Daytime or nighttime driving

Questions?

Future Work

- Improve unsupervised methods for multivariate time series
- Exploit the spatiotemporal structure of the data
- Explore applicability of change-point detection to other domains

Difference of Gaussians

- Subtract one blurred image from another less blurred image
- Increase visibility of edges

Original image

Image after difference of Gaussian filtering in black and white

Histogram Intersection Kernel Proof

- Let $x, y \in \mathbb{R}^D$ be two histogram representations, and let M be the number of pixels in each image. Then, M is also an upper bound for the maximum number of keypoints in any image.
- Claim: A mapping function Φ can be found such that

$$\Phi(x)^T\Phi(y)=\sum_{i=1}^D\min(x_i,y_i).$$

• Proof by construction:

$$\Phi(x) := (\overbrace{1,1,...,1}^{x_1}, \underbrace{0,0,...,0}_{M-x_1}, \overbrace{1,1,...,1}^{x_2}, \underbrace{0,0,...,0}_{M-x_2}, \underbrace{\dots \overbrace{1,1,...,1}^{x_D}, \underbrace{0,0,...,0}_{M-x_D}})$$

VGG-16 Architecture

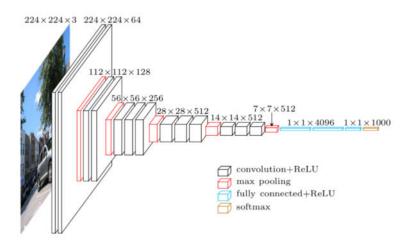


Image from
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Hidden Markov Model

• Hidden variables $\{z_n\}_{n=1}^N$

$$z_n = egin{cases} (1 & 0)^T & ext{if "in-car"} \ (0 & 1)^T & ext{otherwise} \end{cases}$$

- Initial distribution $\pi = (\pi_1 \quad \pi_2)$
- Transition probability $A_{ij}=p(z_{n,j}=1|z_{n-1,i}=1)$, where $i,j\in\{1,2\}$
- Conditional distributions of observed variables:

$$\begin{split} p(x_n|z_n,\Phi) &= \left(\frac{1}{\sqrt{2\pi\sigma_1}} \exp(\frac{(x_n-\mu_1)^2}{\sigma_1})\right)^{z_{n,1}} \cdot \\ &\left(\frac{1}{\sqrt{2\pi\sigma_2}} \exp(\frac{(x_n-\mu_2)^2}{\sigma_2})\right)^{z_{n,2}}, \end{split}$$

where $\Phi = {\sigma_1, \sigma_2, \mu_1, \mu_2}$ is the set of emission parameters.

Hidden Markov Model Coefficient Estimates

- Initial distribution: $\hat{\pi} = [0.667 \quad 0.333]$
- Transition matrix: $\hat{A} = \begin{bmatrix} 0.9883 & 0.0117 \\ 0.0044 & 0.9956 \end{bmatrix}$
- Emission parameters:
 - Gaussian distribution governs the prediction of observed scores, based on the current state
 - In-car: $\hat{\mu_1} = -1.85$, $\hat{\sigma_1} = 1.33$
 - Out-of-car: $\hat{\mu}_2 = 1.96$, $\hat{\sigma}_2 = 1.06$

SIFT-BoVW-SVM Results

The SVM scores were outputted for videos with change-points.

Table: Univariate Multiple Change-point Detection Results

Method	Recall (10 s)	Precision (10 s)
Maximum Likelihood Estimation	66%	34%
Autoregressive (1)	90%	17%
Hidden Markov Model	90%	17%
Mean Model	96%	18%
Mean-Squared Error	91%	30%

Change Point Detection Methods Applied to Body-Worn Video

Stephanie Allen, SUNY Geneseo
David Madras, University of Toronto
Ye Ye, UCLA
Greg Zanotti, DePaul University

Academic Mentor: Dr. Giang Tran Consultant: Dr. Jeff Brantingham, UCLA Industry Mentor: Sgt. Javier Macias, LAPD

August 18, 2016

LAPD & Body-Worn Video

- Third largest USA municipal police department, with 9,843 officers
- A leader in the effort to equip police officers with body-worn cameras

Body-worn Video (BWV)

Body-worn Video (BWV)

- Cameras worn on officers' chests used to record police-public interactions
 - Currently deployed to 1,200 officers; will be scaled up to 7,000

Benefits:

- Provide video record in the case of public disagreements
- Shown to increase police professionalism

Challenge:

Create large volumes of data, necessitating automatic data analysis

Problem Statement

- Goal: Create algorithms to detect change-points in body-worn video
 - ► This will greatly streamline the video review process
- For this project, we focus on a specific class of change-points:
 - The moment at which an officer exits or enters their car

Data Analysis - In Car Examples

Images from www.youtube.com

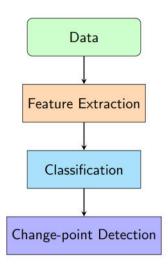
Data Analysis - Out of Car Examples

Images from www.youtube.com Allen, Madras, Ye, Zanotti (IPAM)

Data Analysis

- Sample of data taken from BWV pilot program (Dec '14-May '15)
- 691 videos, average length 9 minutes
- 420 contain either an entrance or exit from vehicle
- Of these:
 - 270 are taken from driver side
 - 274 are taken from a moving vehicle
 - 176 occur during nighttime

Overview of Methods



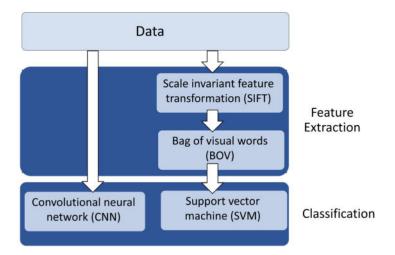
Overview of Methods

- Feature extraction methods take the sequence of images and reduce the images to compact representations that are then passed into classifiers.
- Other classifiers take raw images.
- Change-point detection methods have the ability to:
 - Take univariate or multivariate data
 - Detect any number of change-points per video

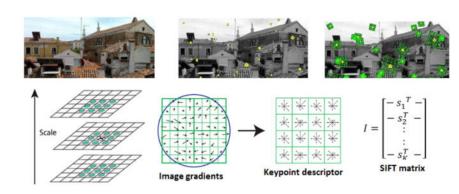
Overview of Methods - Feature Extraction & Classification



Overview of Methods - Feature Extraction & Classification



Keypoint Detection and Description – Scale-Invariant Feature Transformation (SIFT)



Images from Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", and VLFeat.org

Image Representation - Bag of Visual Words

- Sample 20% of images in the training set, extract SIFT descriptors
- Apply k-means clustering, where the centroid of each cluster is a 'visual word'

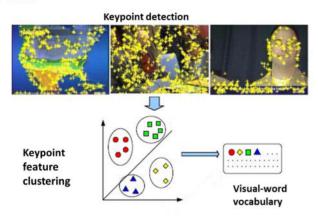
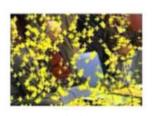
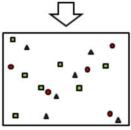


Image from Zhang et al., "Evaluating Bag-of-Visual-Words Representations in Scene Classification"

For each new input image

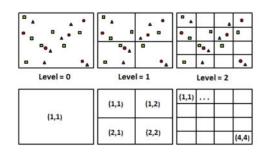
 Assign keypoint descriptors to nearest centroids





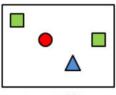
For each new input image

- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution



For each new input image

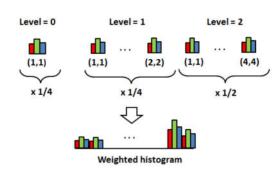
- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution
- Count # of descriptors for each spatial bin



A spatial bin

For each new input image

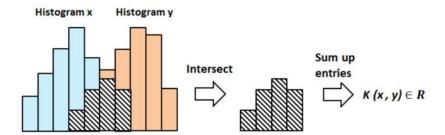
- Assign keypoint descriptors to nearest centroids
- Subdivide image into three levels of spatial resolution
- Count # of descriptors for each spatial bin
- Weight and concatenate spatial histograms



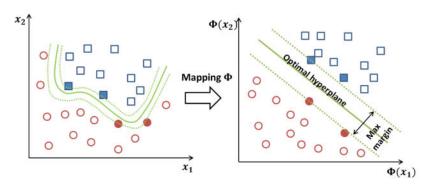
Histogram Intersection Kernel

- Goal: quantify similarity between two weighted histograms
- For two histograms $x, y \in \mathbb{R}^D$, kernel is defined as

$$K(x,y) = \sum_{i=1}^{D} \min(x_i, y_i).$$



Classifier - Support Vector Machine (SVM)



- Kernel function $K(x, y) = \Phi(x)^T \Phi(y) = \sum_{i=1}^D \min(x_i, y_i)$.
- Maximize margin and obtain weight coefficients
- For a new image histogram x, $Score(x) = \sum_{n=1}^{N} a_n t_n K(x, x_n) + b$

Classifier - Neural Network

- An artificial neural network jointly learns a feature representation and discriminative classifier over data
- Neurons are stacked on top of one another in layers to form complex, highly informative features
- At the last layer, outputs are normalized to form class predictions

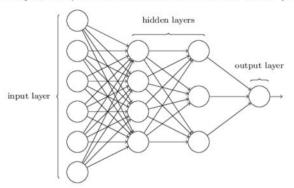
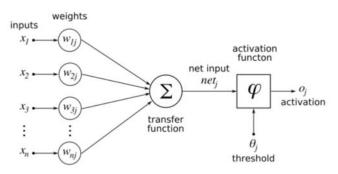


Image from Nielsen, Neural Networks and Deep Learning

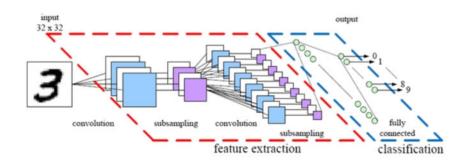
Neural Network Detail

 Generally, operations within a neuron consist of multiplying inputs by weights, passing them to a transfer function, and passing the result through a nonlinear, thresholded "activation" function



 Neural networks are trained by changing the weights according to an iterative optimization algorithm like gradient descent

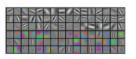
Convolutional Neural Networks



- Convolutional neural networks, or ConvNets, learn hierarchical filter banks for images. Architectures consist of alternating convolutional and pooling layers—some with nonlinearities.
- Convolutional layers slide a filter over an input to detect a certain pattern. Pooling layers subsample upstream outputs.

ConvNet Features

- As ConvNets are trained, the filters change what they detect and "learn" important features.
- Filters at early layers detect edges and blobs. Filters in later layers combine output of lower level filters to detect more complex patterns.



Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

Using and Finetuning ConvNets

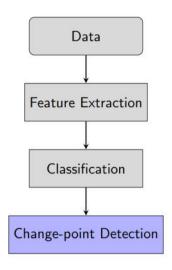
- Although ConvNets are extremely powerful, training them can be incredibly computationally intensive
- General convolutional networks for image recognition are created and released by researchers, and can be "finetuned" to specific problems
- We modify the popular VGG-16 architecture, and change only the top two layers to classify scenes as in/out of car

Classification Results

- Change-point detection depends on strong classification results
- Our predictions were made using 10-fold cross-validation on a large sample of or all of the videos
- Precision: How many of our out of car predictions were truly out of car? (complement of false pos. rate)
- Recall: How many of our out of car frames did we correctly identify?

Classifier	Accuracy	Precision	Recall
SIFT-BOV-SVM	90%	92%	89%
ConvNet	94%	96%	95%

Overview of Methods - Change-point Detection



Change-point Methods Overview

- Given a time series X_i , i = 1...n, there may be one or more **change-points** c where the underlying distribution of the X_i changes.
- In the case of one change-point:

$$X_i \sim F_1 \ \forall \ i \leq c, \ X_i \sim F_2 \ \forall \ i > c$$

for some distributions $F_1 \neq F_2, c \in \{1...n\}$

- Goal: To find c
 - ► Evaluate an objective function or test statistic for each X_i for i ∈ {1...n}
 - ▶ Find *i* to optimize the objective function or all *i* which produce a test statistic value greater than a threshold

Five Change-point Methods

- Forecasting/Time Series
- BoVW Histogram Comparison
- Hidden Markov Model
- Mean-Squared Error
- Maximum Likelihood

Method 1: Forecasting/Time Series

Elements in a time series often are correlated with each other.

Autoregressive One Lag (AR(1)) :
$$X_t = B_0 + B_1 X_{t-1}$$

- If there are no change-points in a sequence of scores, we can assume the sequence is stationary and thus has a constant mean.
- We can forecast the next observation based on a mean of the previous observations.

Mean Model :
$$X_t = \bar{X}$$

Method 1: Forecasting/Time Series

- "Future window" technique: Enables the application of forecasting methods to change-point detection
 - ▶ Estimate a model based on data-points from the beginning of the series
 - ► Forecast a set number of future values using the established model
 - If the forecasting error for all of these observations is larger than a set threshold, declare a change-point.
 - Re-estimate the model based on the observations in this window

Method 2: BoVW Histogram Comparison

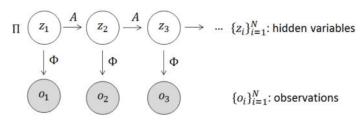
- Establish a baseline histogram and compare successive histograms in the series to this baseline via the future window technique:
 - ▶ χ^2 Method: $\chi^2 = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$, where e is the baseline histogram and o is a histogram in the future window
 - ▶ Match Distance: $d_M(H, K) = \sum_{i=1}^k |h_i k_i|$, where h_i is the cumulative histogram of the elements of h up to bin i

Method 3: Hidden Markov Model

- Goal: given a sequence of observations, infer the most probable sequence of hidden variables.
- Change-point = transitions in the inferred states of hidden variables

Method 3: Hidden Markov Model

- Goal: given a sequence of observations, infer the most probable sequence of hidden variables.
- Change-point = transitions in the inferred states of hidden variables

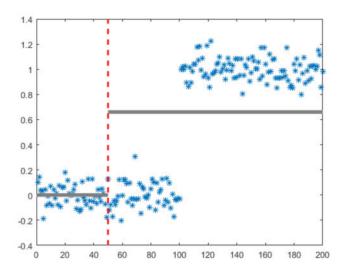


Π: initial distribution

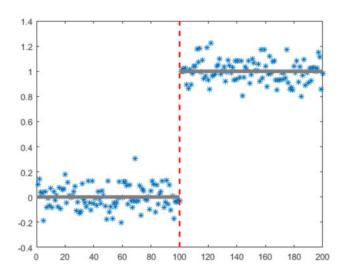
A: transition matrix

Φ: emission parameters of observations' distributions

Method 4: Mean-Squared Error Change-point Detection



Method 4: Mean-Squared Error Change-point Detection



Method 4: Mean-Squared Error Change-point Detection

- For large enough samples, the sample mean \bar{x}_i will be a **normal** random variable by the Central Limit Theorem
- Therefore, \bar{x}_i^2 will be a **gamma random variable** and:

$$MSE(c) - \sum_{i=1}^{n} x_i^2 = c\bar{x}_1^2 + (n-c)\bar{x}_2^2 \sim \Gamma(1, 2\sigma_x^2)$$

 We can then derive a p-value for a measurement of mean-squared error

$$p = \frac{MSE(c) - \sum_{i=1}^{n} x_i^2}{2\sigma_x^2}$$

• Where p-value is low, we are near a change-point

Method 4: Mean-Squared Error - Multiple Change-point Detection

- We can now recursively extend mean-squared error to sequences with multiple change points
 - **1** Given sequence x_i , find x_i with smallest MSE.
 - **2** Calculate *p*-value for MSE(j), then if $p \ge \alpha$ threshold, stop.
 - **3** Run MSE again on sequences $x_1...x_{j-1}$ and $x_{j+1}...x_n$.
 - **3** Return x_j , and the outputs of $MSE(x_1...x_{j-1})$ and $MSE(x_{j+1}...x_n)$ as change-points.

Method 5: Maximum Likelihood Estimation

We find the log-likelihood of the true labels given the data

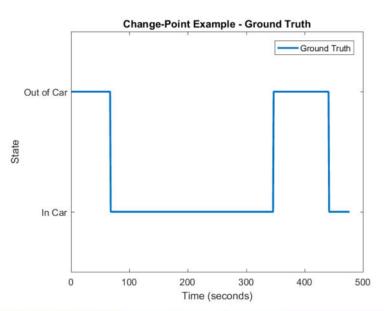
$$\log \mathcal{L}(L,X) \sim \log \prod_{i=1}^{n} P(X_i|L_i)$$

$$= \log(p) \sum_{i=1}^{n} I[x_i = L_i] + \log(1-p) \sum_{i=1}^{n} I[x_i \neq L_i]$$

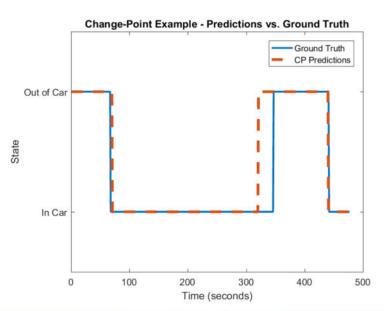
where $x_i \in \{0,1\}$ is classifier output, $p \in [0,1]$ is classifier accuracy

 We maximize this likelihood by formulating it as a linear program, and constraining the number of possible change-points

Change-point Detection Results



Change-point Detection Results



Change-point Detection Results

- Using 691 LAPD videos (420 contain at least 1 change-point)
- Our methods ran on output from the convolutional neural network

Table: Univariate Multiple Change-point Detection Results (All Videos)

Method	Recall (10 s)	Precision (10 s)
Autoregressive (1)	85%	60%
Maximum Likelihood	88%	61%
Mean Model	88%	61%
Mean-Squared Error	88%	68%
Hidden Markov Model	93%	65%

Change-point Detection Result - Multivariate Data

- Tested methods on BoVW histogram representations and CNN representations
- Representations were made in an unsupervised way—didn't need to train a classifier with labeled data (i.e. frames labeled in/out of car)
- Benefits: these methods are much more generalized
- Challenges: high-dimensional space is extremely complex, unsupervised methods are difficult to assess

Table: Multiple change-point detection Results for Multivariate Data

Method	Recall	Precision	
Mean-Squared Error	86%	17%	
Match Distance	99%	15%	
χ^2 Test	100%	21%	

Summary

- Annotated data, conducted data analysis
- Built and tuned classifiers to detect in car/out of car images with 90%+ accuracy, 95%+ precision and recall
- Developed a variety of change point detection methods for univariate and multivariate data
- Achieved 90% recall and nearly 70% precision on change-points in univariate data
- Methods work well on a variety of videos
 - With or without change-points
 - Driver or passenger side
 - Indoor or outdoor driving
 - ► Daytime or nighttime driving

Suggestions for RIPS 2017

- Improve unsupervised methods for multivariate time series
- Investigate methods for online data
- Exploit the spatiotemporal structure in the data
- Explore applicability of change-point detection to alternative domains

Questions?

Difference of Gaussians

- Subtract one blurred image from another less blurred image
- Increase visibility of edges

Original image

Image after difference of Gaussian filtering in black and white

Histogram Intersection Kernel Proof

- Let $x, y \in \mathbb{R}^D$ be two histogram representations, and let M be the number of pixels in each image. Then, M is also an upper bound for the maximum number of keypoints in any image.
- Claim: A mapping function Φ can be found such that

$$\Phi(x)^T\Phi(y)=\sum_{i=1}^D\min(x_i,y_i).$$

• Proof by construction:

$$\Phi(x) := (\overbrace{1,1,...,1}^{x_1}, \underbrace{0,0,...,0}_{M-x_1}, \overbrace{1,1,...,1}^{x_2}, \underbrace{0,0,...,0}_{M-x_2}, \underbrace{\dots \underbrace{1,1,...,1}_{M-x_D}, \underbrace{0,0,...,0}_{M-x_D}})$$

VGG-16 Architecture

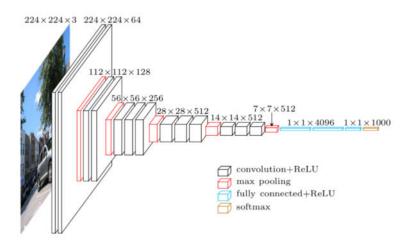


Image from https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Hidden Markov Model

• Hidden variables $\{z_n\}_{n=1}^N$

$$z_n = \begin{cases} (1 & 0)^T & \text{if "in-car"} \\ (0 & 1)^T & \text{otherwise} \end{cases}$$

- Initial distribution $\pi = (\pi_1 \quad \pi_2)$
- Transition probability $A_{ij}=p(z_{n,j}=1|z_{n-1,i}=1)$, where $i,j\in\{1,2\}$
- Conditional distributions of observed variables:

$$\begin{split} p(x_n|z_n,\Phi) &= \left(\frac{1}{\sqrt{2\pi\sigma_1}} \exp(\frac{(x_n-\mu_1)^2}{\sigma_1})\right)^{z_{n,1}} \cdot \\ &\left(\frac{1}{\sqrt{2\pi\sigma_2}} \exp(\frac{(x_n-\mu_2)^2}{\sigma_2})\right)^{z_{n,2}}, \end{split}$$

where $\Phi = {\sigma_1, \sigma_2, \mu_1, \mu_2}$ is the set of emission parameters.

Hidden Markov Model Coefficient Estimates

- Initial distribution: $\hat{\pi} = \begin{bmatrix} 0.667 & 0.333 \end{bmatrix}$
- Transition matrix: $\hat{A} = \begin{bmatrix} 0.9883 & 0.0117 \\ 0.0044 & 0.9956 \end{bmatrix}$
- Emission parameters:
 - ▶ Standard deviations: $\hat{\sigma}_1 = 1.3251$, $\hat{\sigma}_2 = 1.0583$
 - Means: $\hat{\mu_1} = -1.8499$, $\hat{\mu_2} = 1.9646$

SIFT-BoVW-SVM Results

The SVM scores were outputted for videos with change-points.

Table: Univariate Multiple Change-point Detection Results

Method	Recall (10 s)	Precision (10 s)
Maximum Likelihood	66%	34%
Mean Model	89%	18%
Autoregressive (1)	90%	17%
Hidden Markov Model	90%	17%
Mean-Squared Error	91%	30%